Cho hàm số bậc hai y = f(x) = ax2 + bx + c có f(0) = 1, f(1) = 2, f(2) = 5.
a) Hãy xác định giá trị của các hệ số a, b, c.
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có:
f(0) = a.02 + b.0 + c = 1 ⇔ c = 1.
f(1) = a.12 + b.1 + c = 2 ⇔ a + b + c = 2.
f(2) = a.22 + b.2 + c = 5 ⇔ 4a + 2b + c = 5.
Khi đó, ta có hệ phương trình: c=1a+b+c=24a+2b+c=5⇔c=1a+b=14a+2b=4⇔c=1a+b=12a+b=2⇔c=1a=1b=0
Vậy a = 1, b = 0 và c = 1.
b) Với a = 1, b = 0 và c = 1 thì ta có hàm số: y = x2 + 1.
Xét hàm số bậc hai: y = x2 + 1, có:
Đỉnh S có tọa độ xs = −b2a=−02.1=0, ys = 02 + 1 = 1. Hay S(0; 1).
Vì hàm số bậc hai có a = 1 > 0 nên ta có bảng biến thiên sau:
Dựa vào bảng biến thiên ta có:
Hàm số có giá trị nhỏ nhất bằng 1 khi x = 0. Do đó tập giá trị của hàm số là [1; +∞).
Hàm số nghịch biến trên khoảng (-∞;0) và đồng biến trên khoảng (0; +∞).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |