Cho tập hợp L = {n| n = 2k + 1 với k ∈ N}.
a) Nêu bốn số tự nhiên thuộc tập L và hai số tự nhiên không thuộc tập L;
b) Hãy mô tả tập L bằng cách nêu dấu hiệu đặc trưng theo một cách khác.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
L = {n| n = 2k + 1 với k ∈ N }.
a)
+) Với k = 0, ta được: n = 2. 0 + 1 = 1 ∈ L
+) Với k = 1, ta được: n = 2. 1 + 1 = 3 ∈ L
+) Với k = 2, ta được: n = 2. 2 + 1 = 5 ∈ L
+) Với k = 3, ta được: n = 2. 3 + 1 = 7 ∈ L
Do đó bốn số tự nhiên thuộc tập L là: 1; 3; 5; 7
Vậy ta thấy hai số tự nhiên không thuộc tập L là: 0; 2
b)
Nhận thấy các số: 1; 3; 5; 7; ... là các số tự nhiên lẻ.
Tương tự với mọi số tự nhiên k thì ta tìm được các số n thuộc tập hợp L đều là các số tự nhiên lẻ.
Do đó ta viết có thể viết tập hợp L bằng cách nêu dấu hiệu đặc trưng khác như sau:
L = {n ∈ ℕ | n là các số lẻ}.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |