Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
Vì O là giao hai đường chéo của hình bình hành ABCD nên O là trung điểm của AC và BD.
Xét ΔAMO vuông tại M và ΔCPO vuông tại P có
OA = OC (O là trung điểm AC); \(\widehat {AOM} = \widehat {COP}\) (đối đỉnh)
Do đó: ΔAMO = ΔCPO (cạnh huyền – góc nhọn)
⇒ OM = OP hay O là trung điểm của PM.
Xét ΔDQO vuông tại Q và ΔBNO vuông tại N có
OD = OB (O là trung điểm của BD); \(\widehat {DOQ} = \widehat {BON}\) (đối đỉnh)
Do đó: ΔDQO = ΔBNO (cạnh huyền – góc nhọn)
⇒ OQ = ON hay O là trung điểm của QN
Xét tứ giác AMCP có:
O là trung điểm của AC; O là trung điểm của MP
Do đó: AMCP là hình bình hành.
Xét tứ giác MNPQ có
O là trung điểm của MP; O là trung điểm của NQ.
Do đó: MNPQ là hình bình hành.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |