Bài tập  /  Bài đang cần trả lời

Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo. Gọi M, N là trung điểm của OB, OD. a) Chứng minh AMCN là hình bình hành. b) AM cắt BC tại E, CN cắt AD tại F. Chứng minh AE = CF và O, E, F thẳng hàng.

Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo. Gọi M, N là trung điểm của OB, OD.

a) Chứng minh AMCN là hình bình hành.

b) AM cắt BC tại E, CN cắt AD tại F. Chứng minh AE = CF và O, E, F thẳng hàng.

1 Xem trả lời
Hỏi chi tiết
12
0
0
Bạch Tuyết
13/09/2024 10:18:52

Lời giải:

a) Vì O là giao điểm 2 đường chéo của hình bình hành ABCD nên OB = OD.

Mà M, N lần lượt là trung điểm OB, OD nên OM = ON

Mà O là giao điểm 2 đường chéo của hình bình hành ABCD nên OA = OC

Do đó AMCN là hình bình hành (do O là trung điểm AC và MN).

b) Vì AMCN là hình bình hành nên AM // CN hay AE // CF

Mà ABCD là hình bình hành nên AD // BC hay AF // CE

Do đó AECF là hình bình hành nên AE = CF.

Do AECF là hình bình hành mà O là trung điểm của đường chéo AC nên O cũng là trung điểm của đường chéo EF.

Vậy O; E; F thẳng hàng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×