Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm.
a) Tính số đo góc B, góc C (làm tròn đến độ) và đường cao AH.
b) Chứng minh rằng AB. cos B + AC . cosC = BC.
c) Trên cạnh AC lấy điểm D sao cho DC = 2DA. Vẽ DE vuông góc với BC tại E. Chứng minh rằng \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Vì tam giác ABC vuông tại A nên AB2 + AC2 = BC2 (định lí Pytago)
Hay 62 + 82 = BC2, suy ra BC = 10 (cm).
Xét tam giác ABC có \[\sin B = \frac = \frac{8} = \frac{4}{5}\], suy ra \(\widehat B \approx 53^\circ \)
Vì tam giác ABC vuông tại A nên \(\widehat B + \widehat C = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat C = 90^\circ - \widehat B \approx 90^\circ - 53^\circ = 37^\circ \)
Xét tam giác ABC vuông tại A có đường cao AH
Suy ra AH . BC = AB . AC (hệ thức lượng trong tam giác vuông)
Hay AH . 10 = 6 . 8
Suy ra AH = 4,8 cm.
b) Vì tam giác ABH vuông tại H nên BH = AB . cosB
Vì tam giác ACH vuông tại H nên CH = AC . cosC
Ta có BC = CH + BH = AC . cosC + AB . cosB.
c) Xét tam giác ABC vuông tại A có AH ⊥ BC
Suy ra \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\) (hệ thức lượng trong tam giác vuông) (1)
Ta có AH ⊥ BC, DE ⊥ BC nên AH // DE (quan hệ từ vuông góc đến song song)
Suy ra \(\frac = \frac{{C{\rm{D}}}} = \frac{2}{3}\) (vì CD = 2AD)
Suy ra \(\frac{{D{E^2}}}{{A{H^2}}} = \frac{4}{9}\)
Do đó \(\frac{1}{{A{H^2}}} = \frac{4}{{9D{E^2}}}\) (2)
Từ (1) và (2) suy ra \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\)
Vậy \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\).Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |