Cho tam giác ABC đều cạnh a, đường cao AH. Tính độ dài của các vecto:
\(\left| {\overrightarrow {AB} + \overrightarrow {BH} } \right|,\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|,\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
• Ta có \(\left| {\overrightarrow {AB} + \overrightarrow {BH} } \right| = \left| {\overrightarrow {AH} } \right| = AH\)
Xét tam giác ABH có \(AH = AB.\sin 60^\circ = \frac{{a\sqrt 3 }}{2}\)
Vậy \(\left| {\overrightarrow {AB} + \overrightarrow {BH} } \right| = \frac{{a\sqrt 3 }}{2}\).
• Ta có \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} } \right| = CB = a\).
• Vì tam giác ABC đều có AH là đường cao nên AH là đường trung tuyến
Suy ra H là trung điểm của BC
\( \Rightarrow \left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {2\overrightarrow {AH} } \right| = 2AH = 2.\frac{{a\sqrt 3 }}{2} = a\sqrt 3 \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |