Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) ∆BCF nội tiếp đường tròn tâm O, đường kính BC.
Suy ra \(\widehat {BFC}\) là góc nội tiếp chắn nửa đường tròn đường kính BC.
Khi đó \(\widehat {BFC} = 90^\circ \) hay \(\widehat {AFH} = 90^\circ \).
Vì vậy ba điểm A, F, H cùng thuộc đường tròn đường kính AH (1)
Chứng minh tương tự, ta được \(\widehat {AEH} = 90^\circ \).
Suy ra ba điểm A, E, H cùng thuộc đường tròn đường kính AH (2)
Từ (1), (2), ta được tứ giác AEHF nội tiếp đường tròn đường kính AH.
b) Ta có \(\widehat {FIE} = 2\widehat {FAE} = 2.60^\circ = 120^\circ \) (góc nội tiếp bằng một nửa số đo của của bị chắn).
Suy ra .
Ta có I là tâm đường tròn ngoại tiếp tứ giác AEHF (giả thiết).
Suy ra I là trung điểm AH.
Do đó \(IA = IH = \frac{2} = \frac{4}{2} = 2\,\,\left( {cm} \right)\).
Diện tích hình quạt IEHF của đường tròn (I) là:
\(S = \frac{{\pi .I{A^2}.n^\circ }}{{360^\circ }} = \frac{{\pi {{.2}^2}.120^\circ }}{{360^\circ }} = \frac{{4\pi }}{3}\,\,\,\left( {c{m^2}} \right)\).
Vậy sđ và diện tích hình quạt IEHF của đường tròn (I) bằng \(\frac{{4\pi }}{3}\,\,c{m^2}\).
c) ∆ABC có hai đường cao CF và BE cắt nhau tại H.
Suy ra H là trực tâm của ∆ABC.
Mà AH cắt BC tại D.
Do đó AD ⊥ BC.
Suy ra \(\widehat {HDB} = 90^\circ \).
Khi đó ba điểm B, D, H cùng thuộc đường tròn đường kính BH (3)
Lại có \(\widehat {BFH} = 90^\circ \) (chứng minh trên).
Suy ra ba điểm B, F, H cùng thuộc đường tròn đường kính BH (4)
Từ (3), (4), suy ra tứ giác BDHF nội tiếp đường tròn đường kính BH.
Do đó \(\widehat {HFD} = \widehat {HBD}\) (cùng chắn ) (*)
Ta có tứ giác AEHF nội tiếp đường tròn đường kính AH (chứng minh trên).
Suy ra \(\widehat {EFH} = \widehat {EAH}\) (cùng chắn ) (**)
Ta có \(\widehat {EBC} = \widehat {CAD}\) (cùng phụ với \(\widehat {ACB}\)) (***)
Từ (*), (**), (***), suy ra \(\widehat {HFD} = \widehat {EFH}\).
Vậy FH là tia phân giác của \(\widehat {DFE}\).
d) Ta có tứ giác AEHF nội tiếp đường tròn đường kính AH (chứng minh trên).
Suy ra IE = IH.
Do đó ∆IEH cân tại I.
Vì vậy \(\widehat {IEH} = \widehat {IHE}\) (5)
Lại có \(\widehat {BHD} = \widehat {IHE}\) (cặp góc đối đỉnh) (6)
Mà \(\widehat {BHD} = \widehat {ECO}\) (cùng phụ với \(\widehat {ABC}\)) (7)
Ta có tứ giác BCEF nội tiếp đường tròn tâm O, đường kính BC (giả thiết).
Suy ra OE = OC.
Do đó ∆OEC cân tại O.
Vì vậy \(\widehat {ECO} = \widehat {OEC}\) (8)
Từ (5), (6), (7), (8), suy ra \(\widehat {IEH} = \widehat {OEC}\).
Mà \(\widehat {OEH} + \widehat {OEC} = 90^\circ \) (do BE ⊥ AC).
Suy ra \(\widehat {OEH} + \widehat {IEH} = 90^\circ \).
Do đó \(\widehat {IEO} = 90^\circ \).
Vì vậy OE ⊥ EI.
Suy ra IE là tiếp tuyến của (O).
Chứng minh tương tự, ta được IF là tiếp tuyến của (O).
Mà I ∈ AH.
Vậy 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại điểm I.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |