Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta thấy tổng 5 chữ số nhỏ nhất là 1 + 2 + 3 + 4 + 5 = 15
Tổng 5 chữ số lớn nhất là 3 + 4 + 5 + 6 + 7 =25
Do đó tổng của 5 chữ số luôn nằm nữa 15 và 25. Do đó tổng đó chia hết cho 9 nên nó chỉ có thể là 18
Mặt khác tổng của 7 chữ số là 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28
Để có được tổng 18 ta cần loại đi 2 chữ số có tổng bằng 28 – 18 = 10
Do đó có các trường hợp: loại cặp 3; 7 còn 5 số 1; 2 ; 4; 5; 6 hoặc loại cặp 4; 6 còn 5 số 1; 2; 3; 5; 7
Số số thỏa mãn là: 3 . 4! + 1 . 4! = 96 số
Vậy ta lập được 96 số.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |