Bài tập  /  Bài đang cần trả lời

Cho tứ giác lồi ABCD có các đường chéo AC = x, BD = y và góc giữa AC và BD bằng α. Gọi S là diện tích của tứ giác ABCD. a) Chứng minh S=12xysinα . b) Nêu kết quả trong trường hợp AC ⊥ BD.

Cho tứ giác lồi ABCD có các đường chéo AC = x, BD = y và góc giữa AC và BD bằng α. Gọi S là diện tích của tứ giác ABCD.

a) Chứng minh S=12xysinα .

b) Nêu kết quả trong trường hợp AC ⊥ BD.

1 trả lời
Hỏi chi tiết
9
0
0

a) Ta có SABCD = SABD + SCBD.

Vẽ AH và CK vuông góc với BD tại H và K.

Gọi I là giao điểm của hai đường chéo AC và BD.

Ta có : AH = AI.sinα ; CK = CI.sinα.

SABCD=12AH.BD+12CK.BD=12BD.(AH+CK)=12BD.(AI+IC)sinα=12BD.ACsinα

⇒ SABCD=12x.ysinα

b) Nếu AC ⊥ BD thì sinα = sin90° = 1, khi đó SABCD=12x.y

Như vậy nếu tứ giác lồi có hai đường chéo vuông góc với nhau thì diện tích của tứ giác đó bằng một nửa tích độ dài của hai đường chéo.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư