Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Gọi M và N lần lượt là trung điểm của OB và CD.
a) CMR: \(\widehat {AMN} = 90^\circ \). Từ đó suy ra bốn điểm A, M, N, D cùng thuộc một đường tròn.
b) So sánh AN và MD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
Kẻ NH vuông góc với DO
Ta có ABCD là hình vuông ⇒ AC vuông góc với BD
Mà N là trung điểm của DC, NH vuông góc với DO
⇒ NH \({\rm{//}}\) OC
Do đó, NH là đường trung bình
Mà M là trung điểm OB (gt)
Suy ra H là trung điểm OD
\(NH = \frac{1}{2}OC = OM\)
Suy ra HM = OA
Xét tam giác OMA và tam giác HNM có:
\(\widehat H = \widehat O = 90^\circ \)
NH = MO
HM = OA
Do đó tam giác OMA và tam giác HNM bằng nhau
\( \Rightarrow \widehat {OAM} = \widehat {HMN}\)
\( \Rightarrow \widehat {AMN} = \widehat {AMO} + \widehat {HMN} = \widehat {AMO} + \widehat {OAM} = 90^\circ \) (đcpcm).
Gọi I là trung điểm của AN
Tam giác AMN vuông tại M ⇒ \(MI = \frac{1}{2}AN = AI\)
Tam giác ADN vuông tại D ⇒ \(DI = \frac{1}{2}AN = AI\)
Suy ra IA = IM = IN = ID
Do đó, 4 điểm A, M, N, D cùng thuộc đường tròn tâm I.
b)
Xét đường tròn ngoại tiếp tứ giác AMND
Có AN là đường kính và DM là dây nên AN > DM.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |