Cho tam giác ABC có G là trọng tâm. So sánh diện tích tam giác AGB, BGC và CGA.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi N, M, E lần lượt là trung điểm của AB, AC và BC.
Suy ra CN, BM, AE là các đường trung tuyến của ΔABC
Do đó, CN, BM, AE cắt nhau tại G.
Áp dụng tính chất đường trung tuyến trong tam giác ta có:
\[AG = \frac{2}{3}AE;\,\,BG = \frac{2}{3}BM;\,\,CG = \frac{2}{3}CN\]
Xét ΔAGB và ΔAEB có cùng đường cao hạ từ B xuống AE
Mà đáy \[AG = \frac{2}{3}AE\]
Suy ra \[{S_{AGB}} = \frac{2}{3}{S_{AEB}}\] (1)
Xét ΔAEB và ΔABC có cùng chung chiều cao hạ từ A xuống BC
Mà đáy \[BE = \frac{1}{2}BC\] (vì E là trung điểm của BC)
Suy ra \[{S_{AEB}} = \frac{1}{2}{S_{ABC}}\] (2)
Từ (1) và (2) ta có: \[{S_{AGC}} = \frac{2}{3} \cdot \frac{1}{2}{S_{ABC}} = \frac{1}{3}{S_{ABC}}\]
Chứng minh tương tự ta có: \[{S_{AGC}} = \frac{1}{3}{S_{ABC}};\,\,{S_{BGC}} = \frac{1}{3}{S_{ABC}}\]
Suy ra \[{S_{AGB}} = \,\,{S_{BGC}} = {S_{AGC}} = \frac{1}{3}{S_{ABC}}\]
Vậy \[{S_{AGB}} = \,\,{S_{BGC}} = {S_{AGC}}\].
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |