Cho ∆ABC có AB < AC. Kẻ tia phân giác AD của \[\widehat {BAC}\] (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC.
Chứng minh AD ⊥ FC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi H là giao điểm của AD và CF.
Xét ∆AHF và ∆AHC có:
AF = AC (giả thiết)
\(\widehat {FAH} = \widehat {CAH}\) (vì AD là tia phân giác của \[\widehat {BAC}\])
Cạnh AH chung
Do đó ∆AHF = ∆AHC (c.g.c).
Suy ra \[\widehat {AHF} = \widehat {AHC}\] (hai cạnh tương ứng).
Mà \(\widehat {AHF} + \widehat {AHC} = 180^\circ \) suy ra \(\widehat {AHF} = \widehat {AHC} = 90^\circ \).
Vậy AH ⊥ FC hay AD ⊥ FC.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |