Bài tập  /  Bài đang cần trả lời

Cho ∆ABC có AB < AC. Kẻ tia phân giác AD của \[\widehat {BAC}\] (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh ∆BDF = ∆EDC.

Cho ∆ABC có AB < AC. Kẻ tia phân giác AD của \[\widehat {BAC}\] (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC.

Chứng minh ∆BDF = ∆EDC.

1 trả lời
Hỏi chi tiết
8
0
0
CenaZero♡
13/09 13:44:05

Xét ∆BDF và ∆EDC có:

AE = AB (giả thiết)

\(\widehat {BAD} = \widehat {EAD}\) (vì AD là tia phân giác của \[\widehat {BAC}\])

Cạnh AD chung

Do đó ∆BDF = ∆EDC (c.g.c).

Suy ra BD = ED (hai cạnh tương ứng); \(\widehat {ABD} = \widehat {AED}\) (hai cạnh tương ứng).

Mặt khác \(\widehat {ABD} + \widehat {DBF} = 180^\circ \); \[\widehat {AED} + \widehat {DEC} = 180^\circ \] nên \(\widehat {DBF} = \widehat {DEC}\).

Ta có AF = AC, AB = AE suy ra BF = EC.

Xét ∆BDF và ∆EDC có:

BF = EC (chứng minh trên)

\(\widehat {DBF} = \widehat {DEC}\) (chứng minh trên)

BD = ED (chứng minh trên)

Do đó ∆BDF = ∆EDC (c.g.c).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư