Cho nửa đường tròn (O) đường kính AB. Gọi E là 1 điểm nằm ngoài đường tròn. Tia AE và tia BE cắt đường tròn (O) tại C và D. AD cắt BC tại H.
a) Chứng minh: \(\widehat {AEH} = \widehat {ABH}\).
b) Biết \[\widehat {EAB}\]= 75° và \(\widehat {EBA}\)= 55°. Tính \(\widehat {COD}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: \(\widehat {ACB} = \widehat {ADB}\)= 90° (góc nội tiếp chắn nửa đường tròn)
Suy ra: AD ⊥ EB và BC ⊥ AE hay H là trực tâm của tam giác EAB.
⇒ EH ⊥ AB tại K (K là giao điểm của EH và AB).
\(\widehat {AEH} = \widehat {ABH}\)(cùng phụ với \(\widehat {EAB}\))
b) OA = OC = R suy ra tam giác OAC cân tại O.
\(\widehat {AOC} = \frac{{100^\circ - \widehat {EAB}}}{2} = 52,5^\circ \)
Tương tự: \(\widehat {DOB} = \frac{{100^\circ - \widehat {EBA}}}{2} = 62,5^\circ \)
\(\widehat {COD} = 180^\circ - \,\widehat {AOC} - \widehat {DOB} = 65^\circ \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |