LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

1) Giải hệ phương trình \[\left\{ \begin{array}{l}\frac{6}{x} + \frac{5}{y} = 3\\\frac{9}{x} - \frac{y} = 1\end{array} \right..\] 2) Giải phương trình: \[\left| {1 - 2x} \right| + \left| {x + 1} \right| = x + 2\]. 3) Cho phương trình \[{x^2} - mx + 1 = 0\]. Không giải phương trình, tìm giá trị của m để phương trình có hai nghiệm phân biệt \[{x_1},{x_2}\] thỏa mãn hệ thức:\[{\left( {{x_1} + 1} \right)^2} + {\left( {{x_2} + 1} \right)^2} = 2.\]

1) Giải hệ phương trình \[\left\{ \begin{array}{l}\frac{6}{x} + \frac{5}{y} = 3\\\frac{9}{x} - \frac{y} = 1\end{array} \right..\]

2) Giải phương trình: \[\left| {1 - 2x} \right| + \left| {x + 1} \right| = x + 2\].

3) Cho phương trình \[{x^2} - mx + 1 = 0\]. Không giải phương trình, tìm giá trị của m để phương trình có hai nghiệm phân biệt \[{x_1},{x_2}\] thỏa mãn hệ thức:\[{\left( {{x_1} + 1} \right)^2} + {\left( {{x_2} + 1} \right)^2} = 2.\]

1 trả lời
Hỏi chi tiết
9
0
0

1) Điều kiện: \[xy \ne 0\]

Đặt \[\left\{ \begin{array}{l}\frac{1}{x} = a\\\frac{1}{y} = b\end{array} \right.\]. Hệ phương trình trở thành: \[\left\{ \begin{array}{l}6a + 5b = 1\\9a - 10b = 1\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = \frac{6}\\9\left( {\frac{6}} \right) - 10b = 1\end{array} \right. \Leftrightarrow \left( \begin{array}{l}a = \frac{6}\\\frac{7}{2} = \frac{2}b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{3}\\b = \frac{1}{5}\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} = \frac{1}{3}\\\frac{1}{y} = \frac{1}{5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 5\end{array} \right.\] (thỏa mãn điều kiện).

Vậy hệ phương trình có nghiệm: \[\left( {x;y} \right) = \left( {3;5} \right)\].

2) Ta có bảng xét dấu các biểu thức

+ Xét: \[x \le - 1\left( * \right)\].

Phương trình tương đương với: \[\left( {1 - 2x} \right) - \left( {x + 1} \right) = x + 2\]

\[ \Leftrightarrow - 3x = x + 2 \Leftrightarrow 4x = 2 \Leftrightarrow x = \frac{1}{2}\] (không thỏa mãn điều kiện (*)).

+ Xét: \[ - 1 < x \le \frac{1}{2}\left( {**} \right)\]

Phương trình tương đương với: \[\left( {1 - 2x} \right) + \left( {x + 1} \right) = x + 2\]

\[ \Leftrightarrow 2 - x = x + 2 \Leftrightarrow 0 = 2x \Leftrightarrow x = 0\] (thỏa mãn điều kiện (**)).

+ Xét: \[x > \frac{1}{2}\left( {***} \right)\].

Phương trình tương đương với: \[ - \left( {1 - 2x} \right) + \left( {x + 1} \right) = x + 2\]

\[ \Leftrightarrow 3x = x + 2 \Leftrightarrow 2x = 2 \Leftrightarrow x = 1\] (thỏa mãn điều kiện (***)).

Vậy phương trình có nghiệm: \[x = 0;x = 1\].

3) Ta có: \[\Delta = {\left( { - m} \right)^2} - 4.1.1 = {m^2} - 4.\]

Để phương trình có hai nghiệm phân biệt thì: \[{m^2} - 4 \ge 0 \Leftrightarrow \left[ \begin{array}{l}m \ge 2\\m \le - 2\end{array} \right.\].

Theo hệ thức Vi-ét, ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} = 1\end{array} \right..\]

Ta có \[{\left( {{x_1} + 1} \right)^2} + {\left( {{x_2} + 1} \right)^2} = 2 \Leftrightarrow x_1^2 + 2{x_1} + 1 + x_2^2 + 2{x_2} + 1 = 2\]

\[ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} + 2\left( {{x_1} + {x_2}} \right) - 2{x_1}.{x_2} = 0.\]

\[ \Leftrightarrow {m^2} + 2m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = \sqrt 3 - 1\left( l \right)\\m = - \sqrt 3 - 1\end{array} \right.\]. Vậy \[m = - \sqrt 3 - 1\].

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư