LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O; R), đường kính AB, dây cung DE. Tia DE cắt AB ở C. Biết góc \[\widehat {DOE} = 90^\circ \] và OC = 3R. a) Tính độ dài CD và CE theo R. b) Chứng minh: CD . CE = CA . CB.

Cho đường tròn (O; R), đường kính AB, dây cung DE. Tia DE cắt AB ở C. Biết góc \[\widehat {DOE} = 90^\circ \] và OC = 3R.

a) Tính độ dài CD và CE theo R.

b) Chứng minh: CD . CE = CA . CB.

1 trả lời
Hỏi chi tiết
20
0
0
Tôi yêu Việt Nam
13/09 14:08:21

a) Xét ∆ODE có: \[\widehat {DOE} = 90^\circ \] và OD = OE = R

Do đó ∆ODE vuông cân tại O

• DE2 = OD2 + OE2 (Định lý Py-ta-go trong tam giác ODE vuông)

⇔ DE2 = 2R2

⇔ \[DE = \sqrt 2 R\]

• DE . OH = OD . OE (Hệ thức lượng trong ODE vuông)

⇔ \[\sqrt 2 R.OH = {R^2}\]

⇔ \[OH = \frac{{{R^2}}}{{\sqrt 2 R}} = \frac{R}{{\sqrt 2 }}\]

Xét ∆OHC có: \[\widehat {DHC} = 90^\circ \]

HC2 = DC2 – OH2

\[ \Leftrightarrow H{C^2} = 9{{\rm{R}}^2} - \frac{{{R^2}}}{2}\]

\[ \Leftrightarrow H{C^2} = \frac{{17{R^2}}}{2}\]​

\[ \Rightarrow HC = \frac{{R\sqrt {34} }}{2}\]​​ (cm) (1)

Mà \[DH = HE = \frac{2} = \frac{{\sqrt 2 R}}{2}\] ​(2)

Từ (1) và (2) suy ra DC = HC + DH

                                  = \[\frac{{\sqrt {34} R}}{2} + \frac{{\sqrt 2 R}}{2} = \frac{{R\left( {\sqrt {34} + \sqrt 2 } \right)}}{2}\] (cm)

Ta có: CE = HC – HE

      = \[\frac{{\sqrt {34} R}}{2} - \frac{{\sqrt 2 R}}{2} = \frac{{R\left( {\sqrt {34} - \sqrt 2 } \right)}}{2}\] (cm)

Vậy CD = \[\frac{{R\left( {\sqrt {34} + \sqrt 2 } \right)}}{2}\]

        CE = \[\frac{{R\left( {\sqrt {34} - \sqrt 2 } \right)}}{2}\]

b) Ta có: DC . CE = AC . BC

⇔ \[\frac{{R\left( {\sqrt {34} + \sqrt 2 } \right)}}{2} \cdot \frac{{R\left( {\sqrt {34} - \sqrt 2 } \right)}}{2} = 4{\rm{R}} \cdot 2{\rm{R}}\]

⇔ 8R2 = 8R2

 Vậy CD . CE = AC . BC

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư