Bài tập  /  Bài đang cần trả lời

Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AD và BC. Đường chéo AC cắt các đoạn thẳng BE và DF theo thứ tự tại P và Q. a) Chứng minh tứ giác BEDF là hình bình hành. b) Chứng minh AP = PQ = QC. c) Gọi R là trung điểm của BP. Chứng minh tứ giác ARQE là hình bình hành.

Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AD và BC. Đường chéo AC cắt các đoạn thẳng BE và DF theo thứ tự tại P và Q.

a) Chứng minh tứ giác BEDF là hình bình hành.

b) Chứng minh AP = PQ = QC.

c) Gọi R là trung điểm của BP. Chứng minh tứ giác ARQE là hình bình hành.

1 trả lời
Hỏi chi tiết
30
0
0
Phạm Minh Trí
13/09 14:08:09

a) Ta có: ED = \(\frac{1}{2}AD\)

BF = \(\frac{1}{2}BC\)

Mà ABCD là hình bình hành nên AD = BC và AD// BC

Suy ra: ED = BF và ED // BF

Vậy EDFB là hình bình hành.

b) Vì EB // DF nên EP // DQ

Xét tam giác ADQ có:

EP // DQ và E là trung điểm AD nên PE là đường trung bình của tam giác ADQ.

Suy ra: P là trung điểm AQ hay AP = PQ (1)

Xét tam giác BPC có:

FQ // BP và F là trung điểm BC nên FQ là đường trung bình của tam giác BPC.

Suy ra: Q là trung điểm của PC hay PQ = QC (2)

Từ (1) và (2) suy ra: AP = PQ = QC.

c) Do AE // BC nên áp dụng định lí Thalès ta có:

\(\frac = \frac = \frac{1}{2}\)

Mặt khác R là trung điểm PB nên PR = RB = \(\frac{1}{2}PB\)

Suy ra: EP = PR = RB = \(\frac{1}{2}PB\)

Xét tứ giác ARQE có:

AP = PQ và PE = PR (2 đường chéo AQ, RE cắt nhau tại trung điểm mỗi đường)

Vậy tứ giác ARQE là hình bình hành.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư