LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Lãi suất gửi tiết kiệm trong ngân hàng thường được tính theo thể thức lãi kép theo định kì. Theo thề thức này, nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp. Giả sử một người gửi số tiền A với lãi suất r không đổi trong mỗi kì. a) Tính tổng số tiền (cả vốn lẫn lãi) T1, T2, T3 mà người đó nhận được sau kì thứ 1, sau kì thứ 2 và sau kì thứ 3. b) Dự đoán công thức tính tổng số tiền (cả vốn lẫn lãi) Tn mà người đó thu được sau n kì. Hãy chứng minh công thức ...

Lãi suất gửi tiết kiệm trong ngân hàng thường được tính theo thể thức lãi kép theo định kì. Theo thề thức này, nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp. Giả sử một người gửi số tiền A với lãi suất r không đổi trong mỗi kì.

a) Tính tổng số tiền (cả vốn lẫn lãi) T1, T2, T3 mà người đó nhận được sau kì thứ 1, sau kì thứ 2 và sau kì thứ 3.

b) Dự đoán công thức tính tổng số tiền (cả vốn lẫn lãi) Tn mà người đó thu được sau n kì. Hãy chứng minh công thức nhận được đó bằng quy nạp.

1 trả lời
Hỏi chi tiết
7
0
0
Tôi yêu Việt Nam
13/09 16:48:08

a)

– Tổng số tiền (cả vốn lẫn lãi) T1 mà người đó nhận được sau kì thứ 1 là:

T1 = A + Ar = A(1 + r).

– Tổng số tiền (cả vốn lẫn lãi) T2 mà người đó nhận được sau kì thứ 2 là:

T2 = A(1 + r) + A(1 + r)r = A(1 + r)(1 + r) = A(1 + r)2.

– Tổng số tiền (cả vốn lẫn lãi) T3 mà người đó nhận được sau kì thứ 3 là:

T3 = A(1 + r)2 + A(1 + r)2r = A(1 + r)3.

b) Từ câu a) ta có thể dự đoán Tn = A(1 + r)n.

Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 1 ta có T1 = A(1 + r) = A(1 + r)1.                                  

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: Tk = A(1 + r)k.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Tk + 1 = A(1 + r)k + 1.

Thật vậy,

Tổng số tiền (cả vốn lẫn lãi) Tk + 1 mà người đó nhận được sau kì thứ (k + 1) là:

Tk + 1 = A(1 + r)k + A(1 + r)k.r = A(1 + r)k(1 + r) = A(1 + r)k + 1.

Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.

Vậy Tn = A(1 + r)n với mọi số tự nhiên n ≥ 1.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư