Tìm giá trị lớn nhất của \(A = \frac{{2{m^2} - 4m + 5}}{{{m^2} - 2m + 2}}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
\(A = \frac{{2{m^2} - 4m + 5}}{{{m^2} - 2m + 2}} = \frac{{2{m^2} - 4m + 4 + 1}}{{{m^2} - 2m + 2}} = 2 + \frac{1}{{{m^2} - 2m + 2}}\).
Để A đạt giá trị lớn nhất thì \[\frac{1}{{{m^2} - 2m + 2}}\] đạt giá trị lớn nhất.
Suy ra m2 − 2m + 2 đạt giá trị nhỏ nhất
Lại có m2 − 2m + 2 = m2 − 2m + 1 + 1 = (m − 1)2 + 1 ≥ 1
Dấu “=” xảy ra khi và chỉ khi m − 1 = 0 Û m = 1
Vậy giá trị lớn nhất của A là \[A \le 2 + \frac{1}{1} = 3\] khi m = 1.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |