Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.
a) un = 2n + 3;
b) un = ‒3n + 1;
c) un = n2 + 1;
d) un=2n.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: u1 = 2.1 + 3 = 5; un = 2n + 3 và un+1 = 2(n + 1) +3 = 2n + 5
Do đó un+1 – un = 2n + 5 – (2n + 3) = 2.
Vậy un = 2n + 3 là cấp số cộng với số hạng đầu u1 = 5 và công sai d = 2.
b) Ta có: u1 = ‒3.1 + 1 = −2; un = ‒3n + 1 và un+1 = ‒3(n + 1) + 1 = ‒3n – 2.
Do đó un+1 – un = ‒3n – 2 – (‒3n + 1) = – 3.
Vậy un = ‒3n + 1 là cấp số cộng với số hạng đầu u1 = −2 và công sai d = ‒3.
c) Xét un = n2 + 1 có:
u1 = 12 + 1 = 2;
u2 = 22 + 1 = 5;
u3 = 32 + 1 = 10
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy un = n2 + 1 không phải là cấp số cộng.
d) Xét un=2n có:
u1=21=2; u2=22=1; u3=23.
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy un=2n không phải là cấp số cộng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |