Hình 13 mô tả sơ đồ một sân khấu gắn với hệ trục tọa độ Oxy (đơn vị trên các trục tọa độ là 1 mét). Phần thính phòng giới hạn bởi hai đường thẳng d1 và d2 là vị trí ngồi của khán giả có thể nhìn thấy dàn hợp xướng. Gọi (x; y) là tọa độ ngồi của khán giả ở thính phòng. Viết hệ bất phương trình bậc nhất hai ẩn x, y mà khán giả có thể nhìn thấy dàn hợp xướng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có hình vẽ sau:
Phần chỗ ngồi của khán giả được giới hạn bởi các đường thẳng d1, d2, d và d’ chính là miền tứ giác ABCD.
Đường thẳng d đi qua điểm (0; 22) và song song với trục Ox nên có phương trình là y = 22.
Miền nghiệm nằm ở bên dưới nên ta có bất phương trình y ≤ 22.
Đường thẳng d’ đi qua điểm (0; 9) và song song với trục Ox nên có phương trình là y = 9.
Miền nghiệm nằm ở bên trên đường thẳng d’ nên ta có bất phương trình y ≥ 9.
Đường thẳng d1 có phương trình y = ax + b đi qua hai điểm (– 12; 0) và (– 8; – 8) nên ta thay lần lượt tọa độ hai điểm này vào y = ax + b ta được hệ: −12a+b=0−8a+b=−8⇔a=−2b=−24
⇒ d1: y = – 2x – 24 ⇔ 2x + y = – 24.
Lấy điểm có tọa độ (0; 12) có 2.0 + 12 = 12 > – 24 thuộc miền nghiệm ABCD nên ta có bất phương trình 2x + y > – 24.
Đường thẳng d2 có phương trình y = ax + b đi qua hai điểm (12; 0) và (8; – 8) nên ta thay lần lượt tọa độ hai điểm này vào y = ax + b ta được hệ: 12a+b=08a+b=−8⇔a=2b=−24
⇒ d1: y = 2x – 24 ⇔ 2x – y = 24.
Lấy điểm có tọa độ (0; 12) có 2.0 – 12 = –12 < 24 thuộc miền nghiệm ABCD nên ta có bất phương trình 2x – y < 24.
Từ đó ta có hệ bất phương trình: 2x+y>−242x−y<24y≥9y≤22⇔2x+y>−242x−y<249≤y≤22.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |