Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S.
a) Chứng minh rằng tam giác AQR và tam giác APS là tam giác cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
Vì ABCD là hình vuông (giả thiết)
Nên AB = BC = CD = DA, ABC^=BCD^=CDA^=DAB^=90°
Ta có BAR^+RAD^=DAB^=90°
DAQ^+RAD^=RAQ^=90°
Suy ra BAR^=DAQ^
Xét DABR và DADQ có:
ABR^=ADQ^=90°;
AB = AD (chứng minh trên);
BAR^=DAQ^ (chứng minh trên)
Do đó DABR = DADQ (g.c.g)
Suy ra AR = AQ (2 cạnh tương ứng)
Do đó DAQR cân tại A
Chứng minh tương tự ta có DADS = DABP (g.c.g)
Suy ra AS = AP (2 cạnh tương ứng)
Do đó tam giác APS cân tại A.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |