1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.
Cho tam giác ABC vuông tại A, có \(AB = 8cm,\,\,AC = 6cm\). M là một điểm trên AB. Qua M kẻ các đường thẳng song song với AC và BC lần lượt cắt BC và AC tại D và N. Hãy xác định điểm M để diện tích của hình bình hành MNCD bằng \(\frac{3}{8}\) diện tích của tam giác ABC?
2) Cho hàm số \(y = mx + 1\) (1)
a) Tìm \(m\) để đồ thị hàm số (1) đi qua điểm \(A\left( {1;4} \right)\) . Với giá trị \(m\) vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên \(\mathbb{R}\)?
b) Tìm \(m\) để đồ thị hàm số (1) song song với đường thẳng \(\left( d \right):x + y + 3 = 0\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi độ dài AM là x (cm), \(0 < x < 8\).
Theo định lý Ta-lét trong tam giác ABC với \(MN//BC\) ta có \(\frac = \frac \Leftrightarrow \frac{x}{8} = \frac{6} \Leftrightarrow AN = \frac{3}{4}x\left( {cm} \right)\)
\( \Rightarrow NC = AC - AN = 6 - \frac{3}{4}x\left( {cm} \right)\).
Diện tích hình bình hành \(MNCD\) là:
\({S_{MNCD}} = AM.NC = x\left( {6 - \frac{3}{4}x} \right)\left( {c{m^2}} \right)\)
Diện tích tam giác ABC là: \({S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.6.8 = 24\left( {c{m^2}} \right)\)
Theo bài ra, diện tích của hình bình hành MNCD bằng \(\frac{3}{8}\) diện tích của tam giác ABC, nên ta có phương trình \(x\left( {6 - \frac{3}{4}x} \right) = \frac{3}{8}.24\)
\( \Leftrightarrow {x^2} - 8x + 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 6\end{array} \right.\) (thỏa mãn điều kiện).
Vậy điểm M cách A là 2 cm hoặc 6 cm.
2)
a) Do đồ thị hàm số (1) đi qua điểm \(A\left( {1;4} \right)\) nên ta có phương trình \(4 = m.1 + 1 \Leftrightarrow m = 3\) .
Với \(m = 3\) hàm số (1) có dạng \(y = 3x + 1\)
Vì \(3 > 0\) nên hàm số (1) đồng biến trên \(\mathbb{R}\).
b) Phương trình đường thẳng \[\left( d \right)\] là: \(y = - x - 3\).
Để đồ thị hàm số (1) song song với đường thẳng \[\left( d \right)\] thì \(\left[ \begin{array}{l}m = - 1\\1 \ne - 3\end{array} \right. \Leftrightarrow m = - 1\)
Vậy \(m = - 1\) thì đồ thị của hàm số (1) song song với đường thẳng \[\left( d \right)\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |