LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình. Một thửa ruộng hình chữ nhật, nếu tăng chiều dài thêm 2m, chiều rộng thêm 3m thì diện tích tăng thêm 100m2. Nếu giảm cả chiều dài và chiều rộng đi 2m thì diện tích giảm đi 68m2. Tính diện tích thửa ruộng đó. 2) Xác định a, b để đường thẳng \(\left( d \right):ax + b\) cắt trục tung tại điểm có tung độ bằng \( - 2\) và cắt đồ thị \(\left( P \right):y = \frac{1}{4}{x^2}\) tại điểm có hoành độ bằng 2.

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.

Một thửa ruộng hình chữ nhật, nếu tăng chiều dài thêm 2m, chiều rộng thêm 3m thì diện tích tăng thêm 100m2. Nếu giảm cả chiều dài và chiều rộng đi 2m thì diện tích giảm đi 68m2. Tính diện tích thửa ruộng đó.

2) Xác định a, b để đường thẳng \(\left( d \right):ax + b\) cắt trục tung tại điểm có tung độ bằng \( - 2\) và cắt đồ thị \(\left( P \right):y = \frac{1}{4}{x^2}\) tại điểm có hoành độ bằng 2.

1 trả lời
Hỏi chi tiết
11
0
0
Tôi yêu Việt Nam
13/09 17:31:25

1) Gọi chiều dài của thửa ruộng là \[x\] (m).

Chiều rộng là y (m).

Điều kiện:\[x,{\rm{ }}y > 0\] .

Diện tích thửa ruộng là \(x.y\).

Nếu tăng chiều dài thêm 2m, chiều rộng thêm 3 m thì diện tích thửa ruộng lúc này là: \(\left( {x + 2} \right)\left( {y + 3} \right)\) và diện tích tăng thêm 100m2, tức là \(\left( {x + 2} \right)\left( {y + 3} \right) = xy + 100\) (1)

Nếu giảm cả chiều dài và chiều rộng 2m thì diện tích thửa ruộng còn lại là \(\left( {x - 2} \right)\left( {y - 2} \right)\) và diện tích giảm đi 68m2, tức là \(\left( {x - 2} \right)\left( {y - 2} \right) = xy - 68\) (2)

Từ (1) và (2), ta có hệ phương trình \(\left\{ \begin{array}{l}\left( {x + 2} \right)\left( {y + 3} \right) = xy + 100\\\left( {x - 2} \right)\left( {y - 2} \right) = xy - 68\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}xy + 3x + 2y + 6 = xy + 100\\xy - 2x - 2y + 4 = xy - 68\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 2y = 94\\2x + 2y = 72\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 22\\x + y = 36\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 22\\y = 14\end{array} \right.\)

Vậy diện tích thửa ruộng là: \(S = 22.14 = 308\left( {{m^2}} \right)\)

2) Đường thẳng \(\left( d \right):y = ax + b\) cắt trục tung tại điểm có tung độ bằng \( - 2\), nên ta có phưong trình: \( - 2 = a.0 + b \Leftrightarrow b =  - 2\)

Suy ra đường thẳng \(\left( d \right)\) có dạng: \(y = ax - 2\).

Đường thẳng \(\left( d \right):y = ax - 2\) cắt đồ thị \(\left( P \right):y = \frac{1}{4}{x^2}\) tại điểm có hoành độ bằng 2, nên ta có phương trình:\(a.2 - 2 = \frac{1}{4}{.2^2} \Leftrightarrow a = \frac{3}{2}\)

Vậy đường thẳng \(\left( d \right)\) là: \(y = \frac{3}{2}x - 2\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư