Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD, đáy ABCD là hình thang có đáy lớn AB và AD = a. Mặt bên SAB là tam giác cân tại S, SA = a; mặt phẳng (R) song song với (SAB) và cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q. a) Chứng minh MNPQ là hình thang cân.

Cho hình chóp S.ABCD, đáy ABCD là hình thang có đáy lớn AB và AD = a. Mặt bên SAB là tam giác cân tại S, SA = a; mặt phẳng (R) song song với (SAB) và cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q.

a) Chứng minh MNPQ là hình thang cân.

1 Xem trả lời
Hỏi chi tiết
18
0
0

a) Ta có (ABCD) ∩ (R) = MN, (ABCD) ∩ (SAB) = AB

Mà (R) // (SAB) nên MN // AB.

Tương tự, các mặt phẳng (SAD), (SCB), (SDC) cắt hai mặt phẳng song song (R) và (SAB) theo các cặp giao tuyến song song.

Suy ra MQ // SA, NP // SB, QP // CD // AB.

Do đó QP // MN nên MNPQ là hình thang.

Ta có MQSA=DMDA=CNCB=NPSB  (hệ quả định lí Thalès) và SA = SB, suy ra MQ = NP.

Vậy MNPQ là hình thang cân.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×