Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC. a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\]. b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac\].

Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.

a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].

b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac\].

1 Xem trả lời
Hỏi chi tiết
17
0
0
Bạch Tuyết
13/09/2024 17:32:07

Phương pháp

a) Sử dụng định lí \[\left\{ \begin{array}{l}a \subset \left( P \right)\\b \subset \left( Q \right)\\\left( P \right) \cap \left( Q \right) = d\\a//b\end{array} \right. \Rightarrow d//a//b\]

b) Phương pháp xác định giao điểm của đường thẳng với mặt phẳng:

- Tìm mặt phẳng phụ \[\left( P \right)\] chứa đường thẳng a.

- Tìm giao tuyến d của \[\left( P \right)\] với \[\left( \alpha \right)\] đã cho.

- Tìm giao điểm của d với a.

Sử dụng định lí Ta-let suy ra tỉ số.

Cách giải

a) Xác định giao tuyến của hai mặt phẳng \[\left( {{\bf{SAB}}} \right)\] và \[\left( {{\bf{SCD}}} \right)\].

S là điểm chung của \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].

\[AB//CD;AB \subset \left( {SAB} \right);CD \subset \left( {SCD} \right)\].

Suy ra  \[\left( {SAB} \right) \cap \left( {SCD} \right) = Sx//AB//CD\].

b) Xác định giao điểm K của đường thẳng AM với \[{\bf{mp}}\left( {{\bf{SBD}}} \right)\]. Tính tỉ số \[\frac{{{\bf{AK}}}}{{{\bf{AM}}}}\].

Ta có: \[AM \subset \left( {SAC} \right)\]

Dễ thấy \[S \in \left( {SAC} \right) \cap \left( {SBD} \right)\].

Gọi O là giao điểm của AC và BD. Khi đó \[O \in AC \subset \left( {SAC} \right),O \in BD \subset \left( {SBD} \right)\] nên  \[O \in \left( {SAC} \right) \cap \left( {SBD} \right)\]

Do đó \[SO = \left( {SAC} \right) \cap \left( {SBD} \right)\]

Trong \[\left( {SAC} \right)\], gọi \[K = AM \cap SO\] thì \[K \in AM,K \in SO \subset \left( {SBD} \right)\] nên \[K = AM \cap \left( {SBD} \right)\].

Do \[AB//CD\] nên \[\frac = \frac = \frac{1}{2} \Rightarrow OA = \frac{2}{3}AC,OC = \frac{1}{3}AC\].

Gọi E là trung điểm của OC suy ra ME là đường trung bình của \[\Delta SCO \Rightarrow ME//SO\].

Mà \[OE = \frac{1}{2}OC = \frac{1}{2}.\frac{1}{3}.AC = \frac{1}{6}.AC \Rightarrow AE = AO + OE = \frac{2}{3}AC + \frac{1}{6}AC = \frac{5}{6}AC\].

\[ \Rightarrow \frac = \frac = \frac{4}{5}\].

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×