Quan sát Hình 22a, Hình 22b, Hình 22c và nêu tỉ số khoảng cách từ một điểm M nằm trên mỗi đường conic đến tiêu điểm của nó và khoảng cách từ điểm M đến đường chuẩn tương ứng với tiêu điểm đó.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
- Với mọi điểm M thuộc elip (E): x2a2+y2b2=1 (a > b >0), ta luôn có MFd(M,Δ)=e (0 < e < 1), trong đó F là một trong hai tiêu điểm F1, F2 và Δ là đường chuẩn ứng với tiêu điểm F.
- Với mọi điểm M thuộc hypebol (H): x2a2−y2b2=1 (a > 0, b > 0), ta luôn có MFd(M,Δ)=e (e > 1), trong đó F là một trong hai tiêu điểm F1, F2 và Δ là đường chuẩn ứng với tiêu điểm F.
- Với mọi điểm M thuộc parabol (P): y2 = 2px (p > 0), ta luôn có MFd(M,Δ)=1, trong đó F là tiêu điểm và Δ là đường chuẩn ứng với tiêu điểm F.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |