Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, I lần lượt là trung điểm của SA, SB, BC; điểm G nằm giữa S và I sao cho\[\frac = \frac{3}{5}\]. a) Tìm giao điểm của đường thẳng MG và mặt phẳng (ABCD). b) Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNG).

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, I lần lượt là trung điểm của SA, SB, BC; điểm G nằm giữa S và I sao cho\[\frac = \frac{3}{5}\].

a) Tìm giao điểm của đường thẳng MG và mặt phẳng (ABCD).

b) Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNG).

1 Xem trả lời
Hỏi chi tiết
23
0
0
Tô Hương Liên
13/09/2024 17:39:40

Cách giải:

a)   Xét \[\left( {SAI} \right)\]có \[\left\{ \begin{array}{l}\frac = \frac{1}{2}\\\frac = \frac{3}{5}\end{array} \right. \Rightarrow \frac \ne \frac \Rightarrow MG\]không song song với AI.

Gọi \[AI \cap MG = \left\{ E \right\} \Rightarrow \left\{ \begin{array}{l}E \in MG\\E \in AI \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow MG \cap \left( {ABCD} \right) = \left\{ E \right\}.\]

b)  Xét mặt phẳng \[\left( {SBC} \right)\]có: \[\left\{ \begin{array}{l}\frac = \frac{1}{2}\\\frac = \frac{3}{5}\end{array} \right. \Rightarrow \frac \ne \frac \Rightarrow NG\]không song song với BC.

Gọi\[NG \cap SC = \left\{ K \right\} \Rightarrow \left\{ \begin{array}{l}K \in NG \subset \left( {MNG} \right)\\K \in SC \subset \left( {SBC} \right)\end{array} \right..\]

Ta có\[\left( {MNG} \right) \cap \left( {SAB} \right) = MN;\left( {MNG} \right) \cap \left( {SBC} \right) = NK.\]

Xét\[\left( {SAB} \right)\] có \[MN\parallel AB \Rightarrow MN\parallel CD.\]

Ta có \[MN\parallel CD,MN \subset \left( {MNG} \right),CD \subset \left( {SCD} \right)\]và \[K = \left( {SCD} \right) \cap \left( {MNG} \right)\]nên từ K kẻ đường thẳng\[Kx\parallel CD\], gọi\[Kx \cap SD = L.\]

\[ \Rightarrow KL = \left( {SCD} \right) \cap \left( {MNG} \right)\].

Vậy thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng\[\left( {MNG} \right)\]là hình thang\[MNKL\left( {MN\parallel KL} \right)\].

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×