Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phương pháp
c) Phương pháp xác định giao điểm của đường thẳng a với mặt phẳng \[\left( \alpha \right)\].
- Tìm mặt phẳng phụ \[\left( P \right)\] chứa a.
- Tìm giao tuyến \[d = \left( P \right) \cap \left( \alpha \right)\]
- Tìm giao điểm của d với a.
Sử dụng định lý Ta-lét để tính tỉ số \[\frac\].
Cách giải
3) Gọi I là trung điểm của cạnh CD, G là trọng tâm của tam giác SAB. Tìm giao điểm K của IG và \[\left( {OMN} \right)\]. Tính tỉ số \[\frac\].
*) Tìm giao điểm của IG với \[\left( {OMN} \right)\].
+ Gọi P là trung điểm của AB. Dễ thấy \[IG \subset \left( {SIP} \right)\].
+ Ta tìm giao tuyến của \[\left( {SIP} \right)\] với \[\left( {OMN} \right)\].
Vì I, P là trung điểm của CD, AB nên \[O \in IP \subset \left( {SIP} \right)\].
Mà \[O \in \left( {OMN} \right) \Rightarrow O \in \left( {SIP} \right) \cap \left( {OMN} \right)\;\;\left( 1 \right)\].
Trong \[\left( {SCD} \right)\], gọi \[H = SI \cap MN \Rightarrow \left\{ \begin{array}{l}H \in SI \subset \left( {SIP} \right)\\H \in MN \subset \left( {OMN} \right)\end{array} \right. \Rightarrow H \in \left( {SIP} \right) \cap \left( {OMN} \right)\;\;\left( 2 \right)\].
Từ (1) và (2) suy ra \[OH = \left( {SIP} \right) \cap \left( {OMN} \right)\].
+ Trong \[\left( {SIP} \right)\], gọi \[K = OH \cap IG\].
Khi đó \[\left\{ \begin{array}{l}K \in OH \subset \left( {OMN} \right)\\K \in IG\end{array} \right. \Rightarrow K = IG \cap \left( {OMN} \right)\].
*) Tính \[\frac\].
Trong \[\Delta SCI\] có M là trung điểm SC và \[MH//CI\] nên H là trung điểm của SI.
Trong \[\Delta SIP\] có \[\frac = \frac{1}{2}\] và \[\frac = \frac{1}{2}\] nên \[\frac = \frac = \frac{1}{2}\].
Theo định lý Ta – let ta có \[OH//SP\] hay \[OK//PG\].
Trong \[\Delta IPG\] có O là trung điểm IP và \[OK//PG\] nên K là trung điểm IO.
Vậy \[\frac = \frac{1}{2}\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |