Cho tam giác nhọn ABC. Các đường cao AD và BE cắt nhau tại H. Đường thẳng vuông góc với AB tại A cắt BE ở K. Chứng minh tam giác EAK đồng dạng tam giác ECH.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì H là giao của 2 đường cao AD, BE trong tam giác nên H là trực tâm.
Do đó, CH cũng là đường cao của tam giác ABC hay CH vuông góc với AB
Mà AK vuông góc với AB (giả thiết)
Suy ra: CH song song với AK
⇒HCE^=KAE^ (so le trong)
Xét tam giác EAK và ECH có:
HCE^=KAE^
AEK^=CEH^=90°
Do đó, tam giác EAK đồng dạng với tam giác ECH (g.g).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |