Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD có đáy ABCD là hình thang, biết AB song song với CD và \[AB = 2CD,\] O là giao điểm của AC và BD. Gọi M, N là trung điểm của SB và SD. a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right).\] b) Xác định giao điểm của SC và \[\left( {AMN} \right).\] c) Gọi G là trọng tâm \[\Delta SBC.\] Chứng minh rằng OG song song với mặt phẳng \[\left( {SCD} \right).\]

Cho hình chóp S.ABCD có đáy ABCD là hình thang, biết AB song song với CD và \[AB = 2CD,\] O là giao điểm của AC và BD. Gọi M, N là trung điểm của SB và SD.

a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right).\]

b) Xác định giao điểm của SC và \[\left( {AMN} \right).\]

c) Gọi G là trọng tâm \[\Delta SBC.\] Chứng minh rằng OG song song với mặt phẳng \[\left( {SCD} \right).\]

1 Xem trả lời
Hỏi chi tiết
26
0
0
Bạch Tuyết
13/09/2024 17:46:17

Phương pháp:

a) Xác định giao tuyến dựa vào yếu tố song song.

b) Chọn \[SC \subset \left( {SAC} \right),\] xác định giao tuyến \[\Delta = \left( {AMN} \right) \cap \left( {SAC} \right).\] Khi đó giao điểm của SC và \[\left( {AMN} \right)\] chính là giao điểm của SC và \[\Delta .\]

c) \[d||a \subset \left( P \right) \Rightarrow d||\left( P \right).\]

Cách giải:

a) Xét \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\] có:

+ S là điểm chung thứ nhất.

+ \[\left\{ \begin{array}{l}\left( {SAB} \right) \supset AB\\\left( {SCD} \right) \supset CD\\AB||CD{\rm{ }}\left( {gt} \right)\end{array} \right. \Rightarrow \]Giao tuyến của \[\left( {SAB} \right),{\rm{ }}\left( {SCD} \right)\] là đường thẳng đi qua S và song song với AB, CD.

Trong \[\left( {SAB} \right)\] kẻ đường thẳng d đi qua S và \[d||AB||CD.\]

Vậy \[d = \left( {SAB} \right) \cap \left( {SCD} \right).\]

b) Chọn \[SC \subset \left( {SAC} \right),\] tìm giao tuyến của \[\left( {SAC} \right)\] và \[\left( {AMN} \right).\]

+ A là điểm chung thứ nhất.

+ Trong \[\left( {SBD} \right)\] gọi \[I = MN \cap SO\] ta có: \[I \in SO \subset \left( {SAC} \right) \Rightarrow I \in \left( {SAC} \right).\]

Trong \[\left( {SAC} \right)\] gọi \[E = AI \cap SC\] ta có:

\[\left\{ \begin{array}{l}E \in AI \subset \left( {AMN} \right) \Rightarrow E \in \left( {AMN} \right)\\E \in SC\end{array} \right. \Rightarrow E = SC \cap \left( {AMN} \right).\]

c) Gọi K là trung điểm của SC.

Vì G là trọng tâm tam giác SBC \[ \Rightarrow G \in BK\] và \[\frac = \frac{2}{3}\] (Tính chất trọng tâm).

Do \[AB||CD{\rm{ }}\left( {gt} \right),\] áp dụng định lí Ta-lét ta có: \[\frac = \frac = 2 \Rightarrow \frac = \frac{2}{3}.\]

\[ \Rightarrow \frac = \frac = \frac{2}{3} \Rightarrow OG||DK\] (Định lí Ta-lét đảo).

Mà \[DK \subset \left( {SCD} \right).\] Vậy \[OG||\left( {SCD} \right).\]

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×