Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD. 1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \[\left( {{\rm{SCD}}} \right){\rm{.}}\] 2) Tìm giao tuyến của \[{\rm{mp}}\left( {{\rm{MNP}}} \right)\] và \[{\rm{mp}}\left( {{\rm{ABCD}}} \right){\rm{.}}\] 3) Tìm giao điểm G của đường thẳng SC và \[{\rm{mp}}\left( {{\rm{MNP}}} \right){\rm{.}}\] Tính tỷ số \[\frac.\]

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.

1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \[\left( {{\rm{SCD}}} \right){\rm{.}}\]

2) Tìm giao tuyến của \[{\rm{mp}}\left( {{\rm{MNP}}} \right)\] và \[{\rm{mp}}\left( {{\rm{ABCD}}} \right){\rm{.}}\]

3) Tìm giao điểm G của đường thẳng SC và \[{\rm{mp}}\left( {{\rm{MNP}}} \right){\rm{.}}\] Tính tỷ số \[\frac.\]

1 Xem trả lời
Hỏi chi tiết
34
0
0
Nguyễn Thị Nhài
13/09/2024 17:44:24

Phương pháp:

1) Chứng minh đường thẳng MN song song với 1 đường thẳng nằm trong mặt phẳng \[\left( {SCD} \right).\]

2) Hai mặt phẳng chứa 2 đường thẳng song song thì cắt nhau theo giao tuyến (nếu có) song song với 2 đường thẳng đó.

3) Áp dụng định lí Menelaus trong tam giác SAC: \[\frac.\frac.\frac = 1.\]

Cách giải:

a) Xét tam giác SAB có MN là đường trung bình \[ \Rightarrow MN{\rm{// }}AB\] (Tính chất đường trung bình).

Lại có \[AB{\rm{ // }}CD\] (ABCD là hình bình hành) nên \[MN{\rm{ // }}CD,\] \[CD \subset \left( {SCD} \right) \Rightarrow MN{\rm{ // }}\left( {SCD} \right).\]

b) Ta có \[\left( {MNP} \right)\] và \[\left( {ABCD} \right)\] có điểm P chung.

\[MN \subset \left( {MNP} \right);{\rm{ }}AB \subset \left( {ABCD} \right);{\rm{ }}MN{\rm{ // }}AB \Rightarrow \] Giao tuyến của 2 mặt phẳng \[\left( {MNP} \right)\] và \[\left( {ABCD} \right)\] là đường thẳng qua P và song song với MN, AB.

Trong \[\left( {ABCD} \right)\] kẻ \[EF{\rm{ // }}AB\left( {E \in AD;{\rm{ }}F \in BC} \right),\] khi đó ta có \[\left( {MNP} \right) \cap \left( {ABCD} \right) = EF.\]

c) Gọi \[O = AC \cap BD.\] Do P là trọng tâm tam giác BCD

\[ \Rightarrow \frac = \frac{2}{3} \Rightarrow \frac{{\frac{1}{2}AC}} = \frac{2}{3} \Leftrightarrow \frac = \frac{1}{3} \Rightarrow \frac = \frac{1}{2}\]

Áp dụng định lí Menelaus trong tam giác SAC: \[\frac.\frac.\frac = 1 \Rightarrow 1.2.\frac = 1 \Leftrightarrow \frac = \frac{1}{2} \Rightarrow \frac = \frac{1}{2}.\]

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×