Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Gọi S là giao điểm của BC, DE. M là trung điểm của BC. Chứng minh SH2 + AM2 = SM2.

Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Gọi S là giao điểm của BC, DE. M là trung điểm của BC. Chứng minh SH2 + AM2 = SM2.
1 Xem trả lời
Hỏi chi tiết
16
0
0
Nguyễn Thanh Thảo
13/09/2024 17:43:19

Tam giác ABC vuông tại A có AM là đường trung tuyến.

Suy ra AM = MB = MC.

Tứ giác ADHE, có: DAE^=ADE^=AEH^=90°

Suy ra tứ giác ADHE là hình chữ nhật.

Xét ∆ADE và ∆EHA, có:

AD = EH (ADHE là hình chữ nhật);

DAE^=AEH^=90°

AE chung.

Do đó ∆ADE = ∆EHA (c.g.c).

Suy ra ADE^=AHE^ (cặp góc tương ứng).

Mà ADE^=SDB^ (đối đỉnh).

Do đó SDB^=AHE^

Vì vậy SDB^+90°=AHE^+90°

Suy ra SDB^+BDH^=AHE^+BHA^

Do đó SDH^=SHE^

Xét ∆SHD và ∆SEH, có:

DSH^ chung;

SDH^=SHE^ (chứng minh trên).

Do đó ΔSHD∽ΔSEH(g.g).

Suy ra SHSE=SDSH

Vì vậy SH2 = SE.SD   (1)

Ta có AHE^=SCE^ (cùng phụ với HAC^).

Mà SDB^=AHE^ (chứng minh trên).

Suy ra SDB^=SCE^

Xét ∆SBD và ∆SEC, có:

DSB^ chung;

SDB^=SCE^ (chứng minh trên).

Do đó ΔSBD∽ΔSEC(g.g).

Suy ra SBSE=SDSC

Vì vậy SB.SC = SD.SE    (2)

Từ (1), (2), suy ra SH2 = SB.SC = (SM – MC)(SM + MC).

= SM2 – MC2 = SM2 – AM2.

Vậy SH2 + AM2 = SM2 (điều phải chứng minh).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×