b) Chứng minh rằng BD ^ (SAC).
c) Xác định đường vuông góc chung và tính khoảng cách giữa BD và SC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
b) Do ABCD là hình vuông nên AC ^ BD.
Vì SA ^ (ABCD) nên SA ^ BD mà AC ^ BD nên BD ^ (SAC).
c) Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC, BD.
Kẻ OK ^ SC tại K.
Vì BD ^ (SAC) nên BD ^ OK mà OK ^ SC nên OK là đường vuông góc chung của BD và SC.
Xét tam giác CHA có O là trung điểm của AC và OK // AH (vì cùng vuông góc với SC) nên K là trung điểm của CH. Do đó OK là đường trung bình của tam giác CHA nên OK=AH2=a2 .
Vậy d(BD, SC) = a2 .
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |