Cho tam giác ABC cân ở A có BAC^=120° . Đường trung trực của các cạnh AB và AC cắt nhau ở I và cắt cạnh BC lần lượt tại D, E (Hình 56).
a) Chứng minh điểm I nằm trên đường trung trực của đoạn thẳng DE.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi P và Q lần lượt là giao điểm của hai đường trung trực d, d’ với AC, AB.
• Vì tam giác ABC cân tại A nên AB = AC, B^=C^ .
Vì Q là trung điểm của AB nên AQ = QB = 12 AB.
Vì P là trung điểm của AC nên AP = PC = 12 AC.
Mà AB = AC nên AQ = BQ = AP = CP.
• Xét ∆AQI và ∆API có:
AQI^=API^=90°,
AI là cạnh chung,
AQ = AP (chứng minh trên)
Do đó ∆AQI = ∆API (cạnh huyền – cạnh góc vuông).
Do đó QI = PI (hai cạnh tương ứng).
• Xét ∆BQD và ∆CPE có:
BQD^=CPE^=90°,
B^=C^(chứng minh trên),
BQ = CP (chứng minh trên)
Do đó ∆BQD = ∆CPE (cạnh góc vuông – góc nhọn kề).
Suy ra QD = PE (hai cạnh tương ứng).
• Ta có: QI = QD + DI và PI = PE + EI.
Mà QI = PI và QD = PE (chứng minh trên)
Do đó DI = EI nên điểm I nằm trên đường trung trực của đoạn thẳng DE.
Vậy điểm I nằm trên đường trung trực của đoạn thẳng DE.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |