Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Vẽ hai đường cao AE và AF của hai tam giác ABC và ACD. Chứng minh góc EAF vuông.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì tam giác ABC cân tại A nên AB = AC.
Mà AB = AD (vì A là trung điểm của BD).
Suy ra AC = AD = AB.
Xét ΔAEB và ΔAEC có:
AEB^=AEC^=90°,
Cạnh AE là cạnh chung,
AB = AC (chứng minh trên).
Do đó ΔAEB = ΔAEC (cạnh huyền – cạnh góc vuông).
Suy ra BAE^=CAE^ (hai góc tương ứng).
Xét ΔACF và ΔADF có:
AFC^=AFD^=90°,
Cạnh AF là cạnh chung,
AC = AD (chứng minh trên).
Do đó ΔAFC = ΔAFD (cạnh huyền – cạnh góc vuông).
Suy ra FAC^=FAD^ (hai góc tương ứng).
Ta có BAE^+CAE^+FAC^+FAD^=180°
Mà BAE^=CAE^, FAC^=FAD^(chứng minh trên).
Suy ra 2EAC^+2FAC^=180°
Hay 2EAC^+FAC^=180°:2=90°
Do đó EAF^=90°.
Vậy góc EAF vuông.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |