Cho đa thức F(x) = x3 – 3x2 + 2x + m – 1, trong đó m là một số cho trước.
Chứng tỏ rằng: Nếu đa thức F(x) có nghiệm x = 0 thì m = 1; ngược lại, nếu m = 1 thì đa thức có nghiệm x = 0.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Thay x = 0 vào F(x), ta được F(0) = m – 1. Sử dụng kết quả này, ta có:
• Nếu đa thức F(x) có nghiệm x = 0 thì F(0) = 0, suy ra m – 1 = 0. Do đó m = 1.
• Ngược lại, nếu m = 1 thì F(0) = 1 – 1 = 0, chứng tỏ x = 0 là nghiệm của F(x).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |