Cho bốn điểm A, B, C, D. Chứng minh rằng AB→=CD→ khi và chỉ khi trung điểm của hai đoạn thẳng AD và BC trùng nhau.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
+) Có AB→=CD→, cần chứng minh trung điểm của hai đoạn thẳng AD và BC trùng nhau.
Gọi trung điểm của AD là I, trung điểm BC là J.
Khi đó ta có: IA→+ID→=0→, JB→+JC→=0→.
Theo quy tắc ba điểm ta có:
IJ→=IA→+AJ→=IA→+AB→+BJ→
IJ→=ID→+DJ→=ID→+DC→+CJ→
Suy ra: IJ→+IJ→=(IA→+AB→+BJ→)+(ID→+DC→+CJ→)
=(IA→+ID→)+(AB→+DC→)+(BJ→+CJ→)
=0→+(AB→+DC→)−(JB→+JC→)
=(AB→+DC→)−0→=AB→+DC→.
Do đó: AB→+DC→=2IJ→ (1)
Mà AB→=CD→ nên AB→+DC→=CD→+DC→=CC→=0→ (2)
Từ (1) và (2) suy ra: IJ→=0→
Do đó I ≡ J hay trung điểm của AD và BC trùng nhau.
+) Có trung điểm của hai đoạn thẳng AD và BC trùng nhau, cần chứng minh AB→=CD→.
Gọi I là trung điểm của AD thì I cũng là trung điểm của BC.
Do đó: IA→+ID→=0→, IB→+IC→=0→.
Theo quy tắc ba điểm ta có: AB→=AI→+IB→; CD→=CI→+ID→
Suy ra: AB→−CD→=(AI→+IB→)−(CI→+ID→)=(IB→+IC→)−(IA→+ID→)=0→−0→=0→
⇒AB→=CD→.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |