Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là các điểm đối xứng với H qua AB và AC.
a) Chứng minh ba điểm A, D, E thẳng hàng.
b) Tứ giác BDEC là hình thang vuông.
c) BC = BD + CE.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có D là điểm đối xứng với H qua AB (giả thiết).
Suy ra AB là đường trung trực của đoạn DH.
Do đó AD = AH.
Tam giác ADH cân tại H (do AD = AH) có AB là đường trung trực.
Suy ra AB cũng là đường phân giác của tam giác ADH.
Do đó \(\widehat {DAB} = \widehat {BAH}\).
Chứng minh tương tự, ta được \(\widehat {HAC} = \widehat {CAE}\).
Ta có \(\widehat {DAE} = \widehat {DAB} + \widehat {BAH} + \widehat {HAC} + \widehat {CAE} = 2\widehat {BAH} + 2\widehat {HAC}\).
\( = 2\left( {\widehat {BAH} + \widehat {HAC}} \right) = 2\widehat {BAC} = 2.90^\circ = 180^\circ \).
Vậy ba điểm D, A, E thẳng hàng.
b) Ta có A, D, B lần lượt là các điểm đối xứng với các điểm A, H, B qua AB.
Suy ra ∆ADB = ∆AHB.
Do đó \(\widehat {ADB} = \widehat {AHB} = 90^\circ \).
Vì vậy BD ⊥ DE (1)
Chứng minh tương tự, ta được CE ⊥ DE (2)
Từ (1), (2), suy ra BD // CE và \(\widehat {BDE} = 90^\circ \).
Vậy tứ giác BDEC là hình thang vuông.
c) Ta có AB là đường trung trực của đoạn DH (chứng minh trên).
Suy ra BD = BH.
Chứng minh tương tự, ta được CH = CE.
Ta có BC = BH + HC = BD + CE.
Vậy BC = BD + CE.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |