Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.
a) Tứ giác MNPQ là hình gì? Vì sao?
b) Để tứ giác MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?
c) Cho AC = 6 cm, BD = 8 cm. Hãy tính diện tích tứ giác MNPQ.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có MN, NP, PQ, QM lần lượt là đường trung bình của các tam giác ABC, BCD, ACD, ABD.
Suy ra MN // AC; NP // BD; PQ // AC; QM // BD.
Mà AC ⊥ BD (giả thiết).
Do đó MN ⊥ NP; PQ ⊥ QM và MN ⊥ QM.
Suy ra \(\widehat {MNP} = \widehat {QMN} = \widehat {PQM} = 90^\circ \).
Vậy tứ giác MNPQ là hình chữ nhật.
b) Ta có tứ giác MNPQ là hình chữ nhật (kết quả câu a).
Vì vậy để tứ giác MNPQ là hình vuông thì MN = NP.
Mà \(MN = \frac{2};NP = \frac{2}\).
Suy ra AC = BD.
Vậy tứ giác MNPQ là hình vuông thì tứ giác ABCD cần thêm điều kiện AC = BD.
c) Ta có \(MN = \frac{2} = \frac{6}{2} = 3\,\,\left( {cm} \right);NP = \frac{2} = \frac{8}{2} = 4\,\,\left( {cm} \right)\).
Diện tích hình chữ nhật MNPQ là: S = MN.NP = 3.4 = 12 (cm2).
Vậy diện tích tứ giác MNPQ bằng 12 cm2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |