LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại A, đường cao AD, O là trung điểm của AC, điểm E đối xứng với điểm D qua điểm O. a) Chứng minh tứ giác AECD là hình chữ nhật. b) Gọi I là trung điểm của AD, chứng tỏ I là trung điểm của BE. c) Cho AB = 10 cm, BC = 12 cm. Tính diện tích tam giác OAD. d) Đường thẳng OI cắt AB tại K. Tìm điều kiện của tam giác ABC để tứ giác AEDK là hình thang cân.

Cho tam giác ABC cân tại A, đường cao AD, O là trung điểm của AC, điểm E đối xứng với điểm D qua điểm O.

a) Chứng minh tứ giác AECD là hình chữ nhật.

b) Gọi I là trung điểm của AD, chứng tỏ I là trung điểm của BE.

c) Cho AB = 10 cm, BC = 12 cm. Tính diện tích tam giác OAD.

d) Đường thẳng OI cắt AB tại K. Tìm điều kiện của tam giác ABC để tứ giác AEDK là hình thang cân.

1 trả lời
Hỏi chi tiết
17
0
0

a) Xét tứ giác AECD, có:

Hai đường chéo AC và DE cắt nhau tại O

O là trung điểm của AC (gt)

O là trung điểm của DE (E đối xứng với D qua O)

Suy ra tứ giác AECD là hình bình hành.

Ta lại có AD⊥BC⇒ADC^=900

⇒AECD là hình chữ nhật.

b) Vì AECD là hình chữ nhật nên AD = CD và AD // CD hay AD // BD.

Xét ΔABC cân tại A, có AD là đường cao nên AD cũng là đường là đường trung tuyến

⇒D là trung điểm của BC.

⇒BD = DC

Mà AD = DC

⇒AD = DB

Xét ABDE có AD = DB và AD // BD nên ABDE là hình bình hành

Mặt khác I là trung điểm AD

Do đó I là trung điểm của BE.

c) Ta có: BD=DC=BC2=122=6cm (D là trung điểm của BC)

Xét tam giác ADC có:

O là trung điểm AC

I là trung điểm của AD

⇒ OI là đường trung bình tam giác ADC

⇒OI // DC và OI=12DC=12.6=3cm.

Mà DC⊥AD (gt)

⇒OI⊥AD

Xét ΔABD vuông tại D, có:

AB2 = AD2 + DB2 (định lý Py – ta – go)

102 = AD2 + 62

100 = AD2 + 36

AD2 = 100 – 36

AD2 = 64

AD = 8 cm.

Diện tích tam giác OAD là:

 SOAD=12.AD.OI=12.8.3=12(cm2).

d) Ta có ABDE là hình bình hành nên AB // DE hay AK // DE

Suy ra AKDE là hình thang.

Nên để AKDE là hình thang cân thì AED^=KDE^ (hai góc kề một đáy bằng nhau)

Mà AED^=ABD^ (hai góc đối trong hình bình hành ABDE)

Tứ giác AODK có hình bình hành nên KAO^=KDE^

⇒KAO^=ABC^

⇒ΔABC đều.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư