Từ điểm M nằm ngoài đường tròn (O), vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA, MB đến đường tròn (O) sao cho C nằm giữa M và D. Gọi I là trung điểm của CD. Chứng minh: M, A, O, I, B cùng nằm trên 1 đường tròn.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
I là trung điểm của CD nên IC = ID
Mà OC = OD
Þ OI là đường trung trực của CD
Þ OI ^ CD
Xét tứ giác AMOI có:
\[\widehat {MIO} = \widehat {MAO} = 90^\circ \]
Þ Tứ giác AMOI nội tiếp (1)
Xét tứ giác AMBO có:
\[\widehat {MBO} = \widehat {MAO} = 90^\circ \]
\[ \Rightarrow \widehat {MBO} + \widehat {MAO} = 180^\circ \]
Þ Tứ giác AMBO nội tiếp (2)
Từ (1) và (2) suy ra 5 điểm A, B, M, I, O cùng thuộc đường tròn đường kính OM.
Vậy A, B, M, I, O cùng thuộc đường tròn đường kính OM.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |