Bài tập  /  Bài đang cần trả lời

Trong không gian Oxyz, cho mặt phẳng (P) : x – 2y + 2z + 6 = 0 và các điểm A(−1; 2; 3), B(3; 0; −1), C(1; 4; 7). Tìm điểm M thuộc (P) sao cho MA2 + MB2 + MC2 đạt giá trị nhỏ nhất.

Trong không gian Oxyz, cho mặt phẳng (P) : x – 2y + 2z + 6 = 0 và các điểm A(−1; 2; 3), B(3; 0; −1), C(1; 4; 7). Tìm điểm M thuộc (P) sao cho MA2 + MB2 + MC2 đạt giá trị nhỏ nhất.

1 Xem trả lời
Hỏi chi tiết
10
0
0
Phạm Văn Phú
13/09 22:57:14

Gọi G là trọng tâm tam giác ABC có tọa độ là G(1; 2; 3).

Ta có: \(M{A^2} + M{B^2} + M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\)

\( = {\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\)

\( = 3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right) + 2\overrightarrow {MG} \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)\)

\( = 3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right)\)

MA2 + MB2 + MC2 đạt giá trị nhỏ nhất ⇔ MG nhỏ nhất (do GA2 + GB2 + GC2 không đổi)

⇔ M là hình chiếu của G trên (P)

Mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n \left( {1; - 2;2} \right).\)

GM vuông góc với (P) nhận vectơ pháp tuyến của (P) làm vectơ chỉ phương.

Phương trình của GM là: \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 - 2t}\\{z = 3 + 2t}\end{array}} \right..\)

Tọa độ của điểm M(1 + t; 2 – 2t; 3 + 2t) thỏa mãn:

(1 + t) – 2(2 – 2t) + 2(3 + 2t) + 6 = 0 ⇔ \(t = - \frac{9}.\)

⇒ \(M\left( { - \frac{2}{9};\frac{9};\frac{5}{9}} \right).\)

Vậy \(M\left( { - \frac{2}{9};\frac{9};\frac{5}{9}} \right)\) thì MA2 + MB2 + MC2 đạt giá trị nhỏ nhất.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×