Tìm các giá trị của m sao cho đồ thị hàm số \(y = \frac{1}{3}{x^3} + m{x^2} - \left( {6m + 9} \right)x - 12\) có các điểm cực đại và cực tiểu nằm cùng một phía đối với trục tung.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
TXĐ: D =ℝ
Ta có y¢ = x2 + 2mx − (6m + 9)
Để hàm số có các điểm cực đại và cực tiểu nằm cùng một phía đối với trục tung khi và chỉ khi phương trình y¢ = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn x1x2 > 0
\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {m^2} + 6m + 9 > 0\\ - 6m - 9 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne - 3\\m < \frac{{ - 3}}{2}\end{array} \right.\]
Vậy \( - 3 \ne m < \frac{{ - 3}}{2}\) là các giá trị của m thỏa mãn.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |