Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại đỉnh A và tam giác MNP cân tại đỉnh M. Biết rằng \(\widehat {ABC} = \widehat {MNP}\) và BC = 2NP. Chứng minh rằng ∆ABC ᔕ ∆MNP và tìm tỉ số đồng dạng.

Cho tam giác ABC cân tại đỉnh A và tam giác MNP cân tại đỉnh M. Biết rằng \(\widehat {ABC} = \widehat {MNP}\) và BC = 2NP. Chứng minh rằng ∆ABC ᔕ ∆MNP và tìm tỉ số đồng dạng.
1 Xem trả lời
Hỏi chi tiết
18
0
0
Phạm Văn Phú
13/09 23:05:45

Lời giải

Gọi E, F lần lượt là trung điểm của AB, AC.

Khi đó, EF là đường trung bình của tam giác ABC. Suy ra EF song song với BC.

Do đó, ∆AEF ᔕ ∆ABC.

Lại có: \(\frac = 2\) nên ∆ABC ᔕ ∆AEF với tỉ số đồng dạng bằng 2 (1).

Vì EF song song với BC nên: \(\widehat {ABC} = \widehat {AEF},\widehat {ACB} = \widehat {AFB}\) (hai góc đồng vị).

Mà tam giác ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\).

Do đó, \(\widehat {ABC} = \widehat {AEF} = \widehat {ACB} = \widehat {AFE}\).

Tam giác MNP cân tại M nên \(\widehat {MNP} = \widehat {NPM}\).

Lại có: \(\widehat {ABC} = \widehat {MNP}\) (giả thiết).

Do đó, \(\widehat {AFE} = \widehat {AEF} = \widehat {MNP} = \widehat {NPM}\).

Ta có EF = \(\frac{1}{2}BC\) (do EF là đường trung bình của tam giác ABC) và

\(NP = \frac{1}{2}BC\) (do BC = 2NP). Do đó, EF = NP.

Tam giác AEF và tam giác MNP có:

\(\widehat {AFE} = \widehat {AEF} = \widehat {MNP} = \widehat {NPM}\) (chứng minh trên)

EF = NP (chứng minh trên)

Do đó, tam giác AEF và tam giác MNP bằng nhau (g.c.g).

Suy ra ∆AEF ᔕ ∆MNP với tỉ số đồng dạng bằng 1 (2).

Từ (1) và (2) ta có: ∆ABC ᔕ ∆MNP với tỉ số đồng dạng bằng 2.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×