Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Xét tam giác đều ABC có cạnh AB = AC = BC = 4 cm.
Kẻ đường cao AH của tam giác đều ABC.
Khi đó, đường cao AH đồng thời là đường trung tuyến. Do đó, ta có:
BH = \(\frac{1}{2}\)BC = \(\frac{1}{2}.4\)= 2 (cm).
Áp dụng định lý Pythagore vào tam giác ABH vuông tại H có:
AH2 + BH2 = AB2
Suy ra AH2 = AB2 – BH2 = 42 – 22 = 12.
Do đó, \(AH = \sqrt {12} \) = \(2\sqrt 3 \) (cm).
Diện tích tam giác ABC là: \(\frac{1}{2}AH \cdot BC = \frac{1}{2} \cdot 2\sqrt 3 \cdot 4 = 4\sqrt 3 \) (cm2).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |