LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N, P lần lượt là trung điểm của HA, HB, HC. Chứng minh rằng: a) ∆MNP ᔕ ∆ABC và tìm tỉ số đồng dạng. b) ∆ABN ᔕ ∆CAM và ∆ACP ᔕ ∆BAM. c) AN ⊥ CM và AP ⊥ BM.

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N, P lần lượt là trung điểm của HA, HB, HC. Chứng minh rằng:

a) ∆MNP ᔕ ∆ABC và tìm tỉ số đồng dạng.

b) ∆ABN ᔕ ∆CAM và ∆ACP ᔕ ∆BAM.

c) AN ⊥ CM và AP ⊥ BM.

1 trả lời
Hỏi chi tiết
7
0
0
CenaZero♡
13/09 23:01:50

Lời giải

a) Tam giác CAH có P, M lần lượt là trung điểm của CH, AH nên MP là đường trung bình của tam giác ACH, suy ra \(\frac = \frac{1}{2}\).

Tam giác BAH có N, M lần lượt là trung điểm của BH, AH nên MN là đường trung bình của tam giác ABH, suy ra \(\frac = \frac{1}{2}\).

Ta có \(\frac = \frac = \frac{{2\left( {PH + HN} \right)}} = \frac{1}{2}\) (do N, P lần lượt là trung điểm của HB, HC).

Tam giác MNP và tam giác ABC có:

\(\frac = \frac = \frac = \frac{1}{2}\).

Nên ∆MNP ᔕ ∆ABC (c.c.c) với tỉ số đồng dạng bằng \(\frac{1}{2}\).

b)

Tam giác ABH vuông tại H và tam giác HAC vuông tại H có:

\(\widehat {ABH} = \widehat {CAH}\,\,\,\,\left( { = 90^\circ - \widehat {ACH}} \right)\)

Do đó, ∆HBA ᔕ ∆HAC (góc nhọn).

Suy ra \(\frac = \frac = \frac = \frac\).

Tam giác ABN và tam giác CAM có:

\(\widehat {ABN} = \widehat {CAM}\) (cmt)

\(\frac = \frac\) (cmt)

Do đó, ∆ABN ᔕ ∆CAM (c.g.c).

Vì ∆HBA ᔕ ∆HAC (cmt). Suy ra \(\frac = \frac = \frac = \frac\).

Xét tam giác ACP và tam giác BAM có:

\(\widehat {ACP} = \widehat {MAB}\,\,\,\,\,\left( { = 90^\circ - \widehat {CAH}} \right)\)

\(\frac = \frac\) (cmt)

Do đó, ∆ACP ᔕ ∆BAM (c.g.c).

c)

+ Vì MN là đường trung bình trong tam giác AHB nên MN song song với AB.

Mà AB vuông góc với AC nên MN vuông góc với AC.

Trong tam giác CAN có MN vuông góc với AC nên MN là đường cao trong tam giác CAN, mà AH là đường cao trong tam giác CAN và M là giao điểm của MN và AH nên M là trực tâm của tam giác CAN. Vậy CM vuông góc với AN.

+ Vì MP là đường trung bình trong tam giác CAH nên MP song song với AC.

Mà AB vuông góc với AC nên MP vuông góc với AB.

Trong tam giác PAB có MP vuông góc với AB nên MP là đường cao trong tam giác PAB, mà AH là đường cao trong tam giác PAB và M là giao điểm của MP và AH nên M là trực tâm của tam giác PAB. Vậy AP vuông góc với BM.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư