Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là chân các đường vuông góc hạ từ H xuống AB, AC và M là trung điểm của BC. Chứng minh rằng:
a) EF = AH.
b) AM ⊥ EF.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a)Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = 90^\circ \).
Vì E, F lần lượt là chân các đường vuông góc hạ từ H xuống AB, AC nên HE vuông góc với AB, HF vuông góc với AC.
Do đó, \(\widehat {HEB} = \widehat {HEA} = \widehat {HFA} = \widehat {HFC} = 90^\circ \).
Xét tứ giác AFHE có: \(\widehat {BAC} = \widehat {HEA} = \widehat {HFA} = 90^\circ \).
Do đó, tứ giác AFHE là hình chữ nhật.
Suy ra AH = FE (hai đường chéo bằng nhau).
b) Vì tứ giác AFHE là hình chữ nhật nên \(\widehat {FHE} = 90^\circ \).
Vì AM là đường trung tuyến trong tam giác ABC vuông tại A nên
AM = MB = MC = \(\frac{1}{2}BC\).
Tam giác AMB có AM = MB nên tam giác AMB cân tại M.
Do đó, \(\widehat {MAB} = \widehat B\).
Lại có \(\widehat B = \widehat {AHE}\,\,\,\,\,\left( { = 90^\circ - \widehat {HEB}} \right)\).
Nên \(\widehat {MAB} = \widehat {AHE}\) (1).
Gọi O là giao điểm của hai đường chéo FE và AH của hình chữ nhật AFHE.
Do đó, OH = OE = OF = OA.
Tam giác OAE có OA = OE nên tam giác OAE cân tại O.
Suy ra \(\widehat {OEA} = \widehat {OAE}\).
Mà AE song song với FH (do AFHE là hình chữ nhật) nên \(\widehat {OHF} = \widehat {OAE}\) (hai góc so le trong).
Do đó, \(\widehat {OEA} = \widehat {OHF}\) (2).
Lại có \(\widehat {OHF} + \widehat {OHE} = \widehat {FHE} = 90^\circ \) (3).
Từ (1), (2), (3) ta có: \[\widehat {MAB} + \widehat {OEA} = 90^\circ \].
Gọi K là giao điểm của AM và EF. Khi đó, \[\widehat {KAE} + \widehat {KEA} = 90^\circ \]. Suy ra \(\widehat {AKE} = 90^\circ \).
Vậy AM vuông góc với EF tại K.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |