Chứng minh các bất đẳng thức sau 3n − 1 > n(n + 2) với \[{\rm{n }} \ge {\rm{ 4}}\]
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Với n = 4 thì \({{\rm{3}}^{{\rm{4 - 1}}}}{\rm{ = 27 > 4}}\left( {{\rm{4 + 2}}} \right){\rm{ = 24}}\)
Giả sử đã có
\({{\rm{3}}^{{\rm{k - 1}}}}{\rm{ > k}}\left( {{\rm{k + 2}}} \right)\)với \(k \ge 4\left( 1 \right)\)
Nhân hai vế của (1) với 3, ta có
\({\rm{3}}{\rm{.}}{{\rm{3}}^{{\rm{k - 1}}}}{\rm{ > 3k}}\left( {{\rm{k + 2}}} \right){\rm{ = }}\left( {{\rm{k + 1}}} \right)\left[ {\left( {{\rm{k + 1}}} \right){\rm{ + 2}}} \right]{\rm{ + 2}}{{\rm{k}}^{\rm{2}}}{\rm{ + 2k - 3}}\)
\( \Leftrightarrow {\rm{3}}\left( {{\rm{k + 1}}} \right){\rm{ - 1 > }}\left( {{\rm{k + 1}}} \right)\left[ {\left( {{\rm{k + 1}}} \right){\rm{ + 2}}} \right]{\rm{ + 2}}{{\rm{k}}^{\rm{2}}}{\rm{ + 2k - 3}}\)
Do \({\rm{2}}{{\rm{k}}^{\rm{2}}}{\rm{ + 2k - 3 > 0}}\)nên \({{\rm{3}}^{\left( {{\rm{k + 1}}} \right){\rm{ - 1}}}}{\rm{ > }}\left( {{\rm{k + 1}}} \right)\left[ {\left( {{\rm{k + 1}}} \right){\rm{ + 2}}} \right]{\rm{ }}\)
Chứng tỏ bất đẳng thức đúng với n = k + 1
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |