Xây dựng công thức biến đổi tích thành tổng
a) Từ các công thức cộng cos(a + b) và cos(a – b), hãy tìm: cos a cos b; sin a sin b.
b) Từ các công thức cộng sin(a + b) và sin(a – b), hãy tìm: sin a cos b.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
a) Ta có: cos(a + b) = cos a cos b – sin a sin b (1);
cos(a – b) = cos a cos b + sin a sin b (2).
Lấy (1) và (2) cộng vế theo vế, ta được: cos(a + b) + cos(a – b) = 2cos a cos b.
Từ đó suy ra, cos a cos b = \(\frac{1}{2}\)[cos(a + b) + cos(a – b)].
Lấy (2) trừ vế theo vế cho (1), ta được: cos(a – b) – cos(a + b) = 2sin a sin b.
Từ đó suy ra, sin a sin b = \(\frac{1}{2}\)[cos(a – b) – cos(a + b)].
b) Ta có: sin(a + b) = sin a cos b + cos a sin b (3);
sin(a – b) = sin a cos b – cos a sin b (4).
Lấy (3) và (4) cộng vế theo vế, ta được: sin(a + b) + sin(a – b) = 2sin a cos b.
Từ đó suy ra, sin a cos b = \(\frac{1}{2}\)[sin(a + b) + sin(a – b)].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |